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Abstract. We develop a theoretic description of the photogalvanic current induced by a high frequency
radiation in asymmetric nanostructures and show that it describes well the results of numerical simulations.
Our studies allow to understand the origin of the electronic ratchet transport in such systems and show
that they can be used for creation of new types of detectors operating at room temperature in a terahertz
radiation range.

PACS. 72.40.+w Photoconduction and photovoltaic effects – 73.63.-b Electronic transport in nanoscale
materials and structures – 05.45.Ac Low-dimensional chaos

1 Introduction

Since the experiments of Glass et al. performed in 1974 [1]
and the theoretical explanations developed in 1976 [2,3]
it is known that an asymmetry of crystal at a micro-
scopic scale can lead to emergence of macroscopic sta-
tionary directed current when the crystal is irradiated by
an external light source. The appearance of directed cur-
rent induced by zero-mean force of radiation in absence of
any external static voltage has been named the photogal-
vanic effect. This unusual phenomenon based on interplay
of space asymmetry, relaxation and external driving had
been mainly discussed for interaction of light with crys-
tals [4,5]. However, this effect has a rather generic physical
origin and the interest to it has been significantly renewed
recently when it became clear that it may play an impor-
tant role for transport in bio-systems where it is difficult to
create static forces in space and where directed transport
may be more easily generated by some oscillating param-
eters in presence of asymmetry at a molecular level (see
e.g. a review [6]). In this community the phenomenon be-
came known as ratchet, following an example of pawl and
ratchet described by Feynman and showing that a directed
transport in asymmetric systems at a thermal equilibrium
is forbidden by the second law of thermodynamics [7].

The appearance of the photogalvanic or ratchet effect
in various systems is described in the reviews [8,9]. The ef-
fect has been observed with vortices in Josephson junction
arrays [10–12], cold atoms [13], macroporous silicon mem-
branes [14], microfluidic channels [15] and other systems.

a http://www.quantware.ups-tlse.fr/dima/

The great variety of systems clearly confirms a generic
nature of the phenomenon.

In parallel to these ratchet studies, a technological
progress made possible to produce artificial superlat-
tices in semiconductors with two-dimensional electron gas
(2DES). The experimental studies of superlattices of an-
tidots in a form of disks demonstrated an important con-
tribution of periodic orbits in the transport properties of
2DES [16,17]. It is important to note that the interest to
particle dynamics on a lattice of rigid disks goes back to
the days of Galton who in far 1889 showed the appear-
ance of statistical laws in such systems [18]. A rigorous
mathematical description of chaos on the Galton board
that leads to statistical laws has been given by Sinai [19].
The links between the chaotic dynamics, periodic orbits
and experimental results for 2DES transport properties
in antidot superlattices have been established in theoret-
ical studies [20]. The interest to effects of microwave ra-
diation on 2DES transport appeared at a relatively early
stage, however, during a relatively long time only the case
of antidots with a disk shape has been considered (see
e.g. [21,22]). Due to symmetry reasons the photogalvanic
effect is absent in such a case.

The experimental studies of 2DES transport in asym-
metric structures in presence of ac-driving have been
started in [23–25]. They demonstrated the principal exis-
tence of photogalvanic transport but no detailed analysis
had been done for 2D structures. The quasi-1D case [24]
has been analyzed in more detail but the ratchet transport
in this case is rather slow due to very slow ac-driving.
Thus, the ratchet transport in this case was linked to
quantum tunneling effects (see [24] and discussions in [9]).
On the contrary the experiments in 2D structures [23,25]
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have been performed at rather high frequencies (50 GHz
and more) showing that high frequency control of ratchet
transport is possible in principle. Moreover, the experi-
ment [25] demonstrated that the photogalvanic current
exists at room temperature. Unfortunately, there was no
further development of this interesting research line. Prob-
ably, the absence of theoretical understanding of the phe-
nomenon is partially responsible for this.

The theoretical studies of ratchet transport in asym-
metric 2DES structures in the form of semidisks Galton
board have been started in [26] and further developed
in [27,28]. They used extensive numerical simulations of
dynamical equations in combination with simple analyt-
ical estimates. A rigorous analytical approach, based on
the kinetic equation, has been developed in [29] that al-
lowed to solve exactly a case at a low density of asym-
metric scatterers of a specific form. Here we combine all
these methods that allows us to obtain a global theoreti-
cal description of the photogalvanic effect in asymmetric
nanostrutures. The development of such global theory al-
lows to make clear predictions for conditions under which
the photogalvanic effect can be used for construction of
room temperature detectors of high frequency radiation
sensitive to polarization.

The paper has the following structure: Section 2 gives
a description of various models of asymmetric nanostruc-
tures and represents simple analytical computations com-
pared with numerical simulations; Section 3 describes an-
alytical results based on the kinetic equation and also con-
siders a general question of ratchets in dynamical systems
with or without time reversibility; the effects of magnetic
field on the photogalvanic current are considered in Sec-
tion 4; discussion of the results and possible application
of the effect are given in Section 5.

2 Model description, analytical and numerical
results

In our studies we consider two main types of antidots: ori-
ented elastic semidisks and cuts (1D intervals of length D)
which produce specular reflection from left side and dif-
fusive scattering reflection from right side (see Fig. 1
top panel). The cuts model has been introduced in [29]
to mimic effect of scattering on a semidisk (right diffu-
sive side of cut approximately represents circular part of
semidisk). The kinetic equation can be solved exactly in
this case. For the semidisks Galton board we assume that
the semidisks form a triangular lattice (see Fig. 1 bot-
tom panel) with R being a distance between disk centers
and rd being the disk radius. Orientation of a semidisk
on (x, y)-plane and angles of elastic scattering are shown
in Figure 2. For the case of cuts, as in [29], it is assumed
that the cuts are irregularly distributed in space with a
concentration of cuts in a unit area being nc (all cuts are
vertical as in Fig. 1). The kinetic theory [29] also works in
a case of regular lattice of cuts if their density is low.

Fig. 1. Top panel: the model of oriented scatterers in a
form of vertical cuts of length D with a concentration nc.
The scattering on cuts is elastic from the left side and dif-
fusive from the right side. The average scattering time on
cuts is τc = 1/(ncDVF ), where VF is the Fermi velocity of
2DES. Bottom panel: the model of semidisks Galton board, one
chaotic trajectory is shown for the system parametes R/rd = 2,
T/EF = 0.1, eErd/EF = 0.3, ωrd/VF = 0.67, ωL/ω = 2/3,
ωτi = ∞ and θ = 0 (see definition of parameters in Sects. 2
and 4).

Fig. 2. Geometry of the semidisk scatterer in (x, y)-plane and
definition of the angle notations. A trajectory colliding with the
semidisk at an angle φi is scattered at an angle φf , which de-
pends on the impact parameter d; the electric field E is linear-
polarized under angle θ to x-axis.

In the limit of low density of scatterers (cuts or disks)
the scattering time τc is

τc = 1/(ncDv) (cuts),
τc =

√
3R2/(8rdv) (semidisks), (1)

where v is the particle velocity (for the Fermi gas v = VF

where VF is the Fermi velocity of 2DES). In addition to
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scattering on antidots we assume that there is also scatter-
ing on impurities which is characterized by the scattering
time τi (see [28,29]). Between the collisions with antidots
and impurities the electron motion is affected only by an
electric microwave field E cosωt linear-polarized under an-
gle θ to x-axis (see Fig. 2). The force acting on electron is
F = eE and the electron velocity at time t+ τs is

v(t+ τs) = v(t) +
2eE
mω

cos(ωt+ ωτs/2) sin(ωτs/2), (2)

where e, m are electron charge and mass.
To find the velocity of stationary flow induced by mi-

crowave oscillations we assume that without microwave
the equilibrium distribution of electron velocities is given
by the Maxwell or the Fermi-Dirac distributions at tem-
perature T . Also it is assumed that the microwave field is
relatively weak and it only slightly perturbs the equilib-
rium distribution. Let us start for simplicity from the case
of the Maxwell distribution fM (v) = exp(−mv2/2T )/Z
(here Z is the normalization constant). Then, according
to (2), the perturbed distribution is

f(v, t, τs) = fM (v)

× exp
[
2evE cos(ωt+ ωτs/2) sin(ωτs/2)

Tω

]
, (3)

where we omit the velocity independent terms.
To compute the ratchet velocity we first consider the

cuts model. We also make certain simplifications which
allow to understand the physical origin of the ratchet
transport keeping a more rigorous treatment for the next
section. Thus, we compute the averaged perturbed distri-
bution function. It is obtained by averaging f(v, t, τs) over
all initial times t and the free flight time τs.

fc(v) =
〈∫ ∞

0

pc(τ)f(v, t, τs)dτs

〉
t

(4)

here pc(τs) is the probability that the scattering occurs
after a time τs. Its exact expression depends on the ge-
ometry of the sample and temperature, but for simplicity
we may assume that pc(τs) = exp(−τs/τc)/τc where τc is
the mean scattering time. Expanding the exponent up to
a second order in E and averaging over t, τs gives:

fc(v) = fM (v)
(

1 +
(τcveE)2

T 2

1
1 + (τcω)2

)
(5)

with this distribution we can compute the ratchet flow
velocity vf,x (in x direction) considering only one scat-
tering on a cut. Indeed, vf,x is the sum of two terms
originated from scatterings on the two sides of a cut
vf,x = v+,x − v−,x. The contribution from the right side
is v+,x = 〈|v|〉/π since the outgoing direction of the parti-
cle is random and the average depends only on the mag-
nitude of the velocity before scattering |v|. On the con-
trary the scattering on the left side just changes the sign
of the velocity in the x direction: vx, as a consequence
v−,x = 〈vxη(vx)〉 where η(vx) is the step theta-function.

The 1/π factor in the expression of v+,x originates from
the averaging over the random scattering angle, it is not
present for v−,x since the scattering on the left side of the
cut is elastic and no additional averaging is needed. If the
distribution is isotropic these two averages are equal, keep-
ing this fact in mind we may compute the contribution to
v+,x, v−,x only from the anisotropic (non equilibrium) part
of fc(v). This gives

vf,x = v+,x − v−,x =
3τ2

c e
2E2

2
√

2πm3T

1
1 + (τcω)2

×
(

1
π

∫ 2π

0

cos2(φ− θ)dφ −
∫ π/2

−π/2

cos2(φ − θ) cos(φ)dφ

)

= − τ2
c e

2E2

2
√

2πm3T

1
1 + (τcω)2

cos(2θ), (6)

where φ is the polar angle of the velocity v, θ is the po-
larization angle and the coefficient comes from the aver-
age value of 〈v4〉 computed over the equilibrium distribu-
tion fM .

Similar computations give the ratchet velocity vf,y in
y-direction. Here the contribution from the right cut side
vanishes v+,y = 0 since after a random scattering the di-
rections with φ and −φ have equal probability. The con-
tribution from the left side is given by v−,y = 〈vyη(vx)〉:

vf,y = v−,y =
3τ2

c e
2E2

2
√

2πm3T

1
1 + (τcω)2

×
(∫ π/2

−π/2

cos2(φ− θ) sin(φ)dφ

)

=
τ2
c e

2E2

√
2πm3T

1
1 + (τcω)2

sin(2θ). (7)

As a result equations (6, 7) give the angle ψ of the direc-
tion of ratchet flow (tanψ = vf,y/vf,x) as a function of
polarization angle θ:

tan(ψ) = −2 tan(2θ). (8)

It is important to note that in the computations above
we assumed that a scattering event definitely occurs after
time τc. This model is rather convenient for numerical
simulations that allows to make a comparison with the
above theoretical estimates. Such a model corresponds to
scattering events randomly placed in time. For a static
random distribution of cuts in space one should compute
the scattering probability with a transport cross section
that gives a numerical factor 3 instead of 2 in equation (8)
(see next section).

Also above it is assumed that there are no impurities.
In their presence the result is proportional to the proba-
bility of scattering on antidots which is equal to the ratio
τi/(τi + τc) = τ/τc due to time ergodicity. Here and below
τ = τcτi/(τc + τi) is the relaxation time scale determined
by the geometrical mean of τi and τc. Hence, in presence
of impurities the ratchet velocity is given by

vf =
τ3e2E2

2τc
√

2πm3T

1
1 + (ωτ)2

(− cos(2θ)
2 sin(2θ)

)
(9)
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where up and down terms correspond to x and y compo-
nents of the ratchet velocity.

The method described above can be also applied to
another form of antidots, e.g. for semidisks. The main dif-
ference from the cut model is that the direction after colli-
sion φf is no longer completely determined by the impact
angle φi nor completely random (see Fig. 2). In fact, it is
given by a conditional probability g(φf |φi) that depends
on the geometry of the scatterer. Due to the scatterer
asymmetry, in general, this distribution is not invariant
under y-axis mirror symmetry. To obtain the expression
of g(φf |φi) for a semidisk scatterer it is convenient to rep-
resent g via two parts:

g(φf |φi) =
{
g+(φf |φi), φi ∈ (−π/2, π/2)
g−(φf |φi), φi ∈ (π/2, 3π/2). (10)

Let us first compute the contribution to g from collisions
with negative x impact velocity g+ that correspond to
impact angles φi ∈ (−π/2, π/2). The scattering is elastic
on all sides of the semidisk. Integrating over the impact
parameter d (see Fig. 2) gives the conditional probabil-
ity g+(φf |φi) of scattering in the direction φf assuming a
collision with an impact angle φi,

g+(φf |φi) =
cos φf−φi

2

2(1 + cosφi)
χ[φi−π,π−φi](φf ) (11)

here χ[φi−π,π−φi] is the characteristic theta-function of the
interval [φi−π, π−φi]. After scattering with an impact an-
gle φi some values of the outgoing angle φf are forbidden
since the trajectory can not cross the bulk of the scatterer,
for example φi + π is always forbidden, the χ function in-
corporates this restriction into g+(φf |φi).

The contribution from the trajectories with positive x
impact velocities is given by the distribution g−(φf |φi)
for impact angles in the interval φi ∈ (π/2, 3π/2). The
resulting conditional probability g−(φf |φi) splits in two
terms: the first comes from the collision with the straight
edge of the semidisk and is expressed as a delta function,
the second is related to the collisions with the curved edge
and is similar to the expression given in equation (11).
Hence,

g−(φf |φi) =
2| cosφi|

1 + | cosφi|δ(φf + φi − 2π)

+
| cos φf−φi

2 |
2(1 + | cosφi|)χ[−|π−φi|,|π−φi|](φf ). (12)

One can check that the distributions obtained in equa-
tions (11, 12) are normalized to 1. This normalization
corresponds to the conservation of the number of particles
after collision:

∫ 2π

0
g+(φf |φi)dφf =

∫ 2π

0
g−(φf |φi)dφf = 1.

Another effect that was not taken into account in the
cuts model is that the scattering probability depends on
the impact angle φi. The probability gc(φi) that the colli-
sion occurs under the angle φi is proportional to the length
of the segment obtained by projecting the semidisk on a

parallel to the impact direction: rd(1+| cos(φi)|), this leads
to the probability distribution

gc(φi) =
1 + | cosφi|
2(2 + π)

. (13)

The distributions given by equations (11–13) and the dis-
tribution function fc(v) (5) give the ratchet velocities via
expressions:

vf,x =
∫ 2π

0

dφf

∫
d2v|v| cos(φf )g(φf |φi)gc(φi)fc(v)

vf,y =
∫ 2π

0

dφf

∫
d2v|v| sin(φf )g(φf |φi)gc(φi)fc(v).

(14)

In the calculation of these integrals it turns out that the
isotropic (equilibrium) term of fc(v) vanishes that corre-
sponds to the absence of the effect at equilibrium. In the
contribution of the anisotropic term of equation (5) only
the angular integrals are different from equations (6, 7)
while the integral on |v| is identical and leads to the same
dependence on system parameters. As a result we obtain

vf =
πτ3e2E2

2(2 + π)τc
√

2πm3T

1
1 + (ωτ)2

(− cos(2θ)
sin(2θ)

)
.

(15)

To check the obtained theoretical expressions (9) and (15)
we performed numerical simulations of the cuts and
semidisks models. The dynamical equations are solved nu-
merically between collisions. The Maxwell equilibrium at
temperature T is generated with the help of the Metropo-
lis thermalization algorithm as it is described in [28]. The
computation time along one trajectory is about few hun-
dred thousands of microwave periods. The angular depen-
dence of the ratchet velocity is shown in Figures 3, 4. It is
in a very good agreement with the obtained theoretical ex-
pressions both for the cuts and semidisks models. The fluc-
tuations present in the numerical data are related to the
statistical fluctuations in the Maxwell equilibrium. Also
sufficiently long trajectories should be used to separate
directed ratchet transport compared to diffusive spread-
ing. The statistical error bars are on the level of 10% for
the data shown in Figures 3, 4. We will consider the de-
pendence on the parameters τc, τi in the next section.

3 The kinetic equation approach

The approach described above can be also used for the
Fermi-Dirac equilibrium distribution. However, it if more
convenient to use a more general approach based on the
kinetic equation which reads:

∂f

∂t
+ eE cosωt

∂f

∂p
= −f − f0

τ
, (16)

where f0 is an unperturbed equilibrium distribution, p =
mv. The solution can be presented in a form of expansion
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Fig. 3. Dependence of the rescaled absolute value of ratchet
velocity vf (θ)/vf (θ = 0) on the polarization angle θ for the cuts
and semidisks models (angle is given in radians). For the the
semidisk scatterers (black/black curve with circular dots with
values close to 1 on the vertical axis) the lattice constant is set
to R/rd = 4.5, the impurity scattering time is τi ≈ 15rd/vT

and the Maxwell equilibrium distribution is characterized by
a temperature T . With these settings the numerically deter-
mined average time interval between two successive collisions
with semidisks is τc ≈ 0.77τi ≈ 11rd/vT (we note that the
theoretical scattering time is τc ≈ 4.4rd/vT with the thermal

velocity v = vT =
√

(2T/m) in Eq. (1)). In the simulations
for the cuts model (green/gray curve with circular dots and
values close to 2.2 on the vertical axis at θ = 1.) the temper-
ature T and the time scales τc, τi are taken to be the same
as their numerical values in the semidisks case. In both cases
the microwave field amplitude and frequency are eErd/T = 0.4
and ωrd/

√
2mT = 0.316. The smooth curves represent the the-

oretical predictions of equation (9) (blue/black curve for the
cuts model) and equation (15) (red/gray straight line for the
semidisks model).

over powers of external weak field: f = f0 + f1 + f2 + ...
The first term is

f1(p, t) = − τeEv
2(1 + iωτ)

∂f0
∂ε

exp(iωt) + CC, (17)

where CC is a complex conjugated part. The time aver-
aged correction of f2 gives

〈f2(p, t)〉t = −τeE〈cosωt
∂f1
∂p

〉

≈ (τeEv)2

2(1 + (ωτ)2)
∂2f0
∂ε2

, (18)

where we use an approximation that the isotropic term
originating from the term ∂f1/∂v does not contribute to
the ratchet velocity and therefore can be omitted. Also
we assume that the relaxation time τ is independent of
particle energy. The correction (18) has the same form as
in equation (5). Thus, for example,

vf,x = 〈|v|〉/π − 〈vxη(vx)〉

= − (emτE)2

6(1 + (ωτ)2)
cos(2θ)

∫ ∞

0

v4 ∂
2f0(v)
∂ε2

dv

Fig. 4. Dependence of the angle ψ of the ratchet flow direction
on the polarization angle θ for the parameters of Figure 2 with
the same choice of colors: red/gray straight line for theory (ψ =
π−2θ) and black curve fluctuating near it for numerical data in
the semidisks model; blue/black smooth curve for theory (see
Eq. (8)) and green/gray curve fluctuating near it for numerical
data in the cuts model; angles are given in radians.

and for the Fermi-Dirac distribution at T � EF we obtain
the ratchet flow velocity for the cuts model

vf =
τ3e2E2

2πτc
√

2m3EF

1 − π2T 2/(24E2
F )

1 + (ωτ)2

(− cos(2θ)
2 sin(2θ)

)

(19)
while for the semidisks model

vf =
πτ3e2E2

2(2+π)τc
√

2m3EF

1−π2T 2/(24E2
F )

1+(ωτ)2

(− cos(2θ)
sin(2θ)

)
.

(20)

The angle dependence remains the same as for the
Maxwell equilibrium.

The case of weak asymmetry can be also treated in a
more formal way based of the Green function formalism in
the kinetic equation. First we note that in the second order
on alternating electric field the components of steady-state
current density can be described by phenomenological ex-
pressions

jx = αxxx|Ex|2 + αxyy|Ey|2,
jy = Re(αyxy)(ExE

∗
y + E∗

xEy) + Im(αyxy)[EE∗]z. (21)

The components of the photogalvanic tensor αxxx, αxyy

and Re(αyxy) determine the response to the linear-
polarized microwave field. For linear polarization along x
or y axes the current flows along the x direction; the cur-
rent in y direction appears for a tilted linear-polarized
electric field.

The kinetic equation written in the operator form
reads

∂f

∂t
+ F̂ f = Îf, (22)

where f(p, φ) is the distribution function and p =
p(cosφ, sinφ) is the electron momentum. The term (F̂ f)
represents the action of electric field E(t) = Re(Eωe

−iωt)
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of the electromagnetic wave with the complex amplitude
Eω = E∗

−ω:

F̂ = eE(t)
∂

∂p
= e

[
Ex

(
cosφ

∂

∂p
− sinφ

p

∂

∂φ

)

+Ey

(
sinφ

∂

∂p
+

cosφ
p

∂

∂φ

)]
≡ 1

2
F̂ωe

iωt + CC. (23)

The term Îf is the collision integral

Îf(p, φ) =
∫ 2π

0

dφ′[W (φ′, φ)f(p, φ′) −W (φ, φ′)f(p, φ)],

(24)
where W (φ′, φ) is the scattering probability.

The stationary solution of the kinetic equation in the
second order of electric field can be written as

f2 =
1
2
Re

(
Ĝ0F̂ωĜ

ωF̂−ωf0

)
(25)

where F̂ω = eEω
∂

∂p , Ĝ is the Green function of kinetic
equation. For small asymmetry

Ĝω =
1

iω − 1/τ
− 1

(iω − 1/τ)2
Î−, (26)

where Î− is the antisymmetric part of scattering operator
on cuts, semidisks etc. The quantity τ = τiτc/(τi +τc) can
be attributed to the symmetric part of scattering on cuts
and to the impurity relaxation time τi.

The photogalvanic current reads

ji =
e3

4π2
Re

∫
dp

{
τ2Î−

(
E−ω

∂

∂p

)
τ

1 − iωτ
(Eωv)f ′

0

+ τ

(
E−ω

∂

∂p

)
Î−

τ2

(1 − iωτ)2
(Eωvf ′

0)
}

(27)

here v = p/m is the electron velocity, f0(ε) is the equi-
librium distribution function in energy ε, prime means
derivative over energy.

From equation (27) we find the current induced by the
linear polarized microwave field

ji =
e3

4π2
Re

∫
dp

{
τ2viÎ

−vjvk

(
τf ′

0

1 − iωτ

)′

− τ2τ ′f ′
0

(1 − iωτ)2
vivj Î

−vk

}
EjEk. (28)

We use the identities Îξ(ε) = 0, 〈Îχ(p)〉 = 0, and
〈pipj Îpk〉 = −〈pkÎpipj〉, where ξ(ε) is an arbitrary func-
tion of energy, χ(p) is an arbitrary function of momentum;
angular brackets stand for the operation of average over
angles in p-space: 〈...〉 =

∫
dφ
2π (...). The first and the second

identities follow from the conservation of number of par-
ticles, the third is the consequence of the detailed balance
principle according to which the probability of transition
has the symmetry W (p′,p) = W (−p,−p′).

Further we consider an algebraic energy dependencies
of relaxations times: τ, τc ∝ εs. This dependence corre-
sponds to the scattering on a geometric impediment with
Î− = (1/τc)Î− where the operator Î− is the integral op-
erator on φ, τc is the characteristic time of scattering on
cuts or half-disks which depends on the concentration of
scatterers nc. The power s = −1/2 corresponds to scat-
tering on impurities/scatterers with fixed density in space.
We note that s = 3/2 may correspond to a case of charged
non-screened impurities distributed in the system plane.
equation (28) can be transformed to the form:

ji =
e3m

2π

∫
dεf ′

0

v3τ3

τcε(1 + ω2τ2)

{
(2 − 2s)ajki

+
s(1 − ω2τ2)
(1 + ω2τ2)

aijk

}
EjEk, (29)

where v = vu, aijk = 〈uiujÎ−uk〉 and u is a unitary
vector. The stationary current ji = αijkEωjE

∗
ωk under

linear polarized field is given by the following components
of photogalvanic tensor (see Figs. 1, 2): αxxx, αxyy and
Re(αyxy). At T = 0 (a degenerate Fermi gas) the expres-
sions for these components read

αxxx = − e3VF τ
3

πτc(1 + ω2τ2)

[
(2 − 2s) +

s(1 − ω2τ2)
(1 + ω2τ2)

]
axxx,

(30)

αxyy =
e3VF τ

3

πτc(1 + ω2τ2)

×
[
(2 − 2s)axxx − s(1 − ω2τ2)

(1 + ω2τ2)
axyy

]
, (31)

Re(αyxy) = − e3VF τ
3

πτc(1 + ω2τ2)

[
(2 − 2s)axyy

+
s(1 − ω2τ2)
2(1 + ω2τ2)

(axyy − axxx)
]
. (32)

Here, τ, τc are relaxation times taken at ε = εF . Now it is
necessary to calculate two quantities axxx and axyy. They
depend on the model of asymmetric scatterers. For the
case of cuts the scattering probability has the form:

W (φ′, φ) = τc
−1[cosφ′ θ(cosφ′)δ(φ′ + φ− π)

− 1
2

cosφ′ cosφ θ(cosφ)θ(− cosφ′)]. (33)

Using equation (33) we obtain axxx = 1/48, axyy =
−1/16. As a result we have in this model:

αxxx = − e3VF τ
3

48πτc(1 + ω2τ2)2
[2 − s+ (2 − 3s)ω2τ2], (34)

αxyy =
e3VF τ

3

48πτc(1 + ω2τ2)2
[2 + s+ (2 − 5s)ω2τ2], (35)
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Re(αyxy) =
e3VF τ

3

24πτc(1 + ω2τ2)2
[(3 − 2s) + (3 − 4s)ω2τ2)].

(36)
The formulas (34, 35, 36) with s = −1/2 follow also from
the exact solution of the problem for cuts obtained in [29].

According to the previous Section for the semidisks
model the scattering probability is

W (φ′, φ) =
1
τc

{
cosφ′ θ(cosφ′)δ(φ′ + φ− π)

+
1
4
| sin(

φ′ − φ

2
)|[θ(φ− φ′)θ(−φ′ − φ)

+ θ(φ′ − φ)θ(φ′ + φ)
]}
. (37)

This probability W leads to the following results for the
photogalvanic coefficients in the semidisks model:

αxxx = −αxyy = −Re(αyxy)

= − e3VF τ
3

12πτc(1 + ω2τ2)2
[2 − s+ (2 − 3s)ω2τ2]. (38)

In the numerical simulations for the cuts model it was
taken that τ is independent of energy (s = 0). In such a
case from the above equations (34–36) and equation (38)
we obtain

αxxx = −αxyy = −1
3
Re(ayxy)

= − e3τ3
√

2ne

24m
√
mεF τc(1 + ω2τ2)

(cuts); (39)

αxxx = −αxyy = −Re(ayxy)

= − e3τ3
√

2ne

6τcm
√
mεF (1 + ω2τ2)

(semidisks), (40)

where ne is the electron density related to the current by
the relation j = eneVf .

Let us also note that at τ = const. for the case of
Maxwell equilibrium we obtain

αxxx = −αxyy = −1
3
Re(ayxy)

= −
√

2πneτ
3e3

24m
√
mTτc(1 + ω2τ2)

(cuts), (41)

αxxx = −αxyy = −Re(ayxy)

= −
√

2πneτ
3e3

6m
√
mTτc(1 + ω2τ2)

(semidisks). (42)

It is important to note that the relation αxxx = −αxyy,
which is valid for semidisk antidots at any s, implies that
the total photogalvanic current is zero for depolarized ra-
diation. For a general form of scatterers and τ dependent
on energy (s 	= 0) even depolarized radiation produce
nonzero photogalvanic current. This is for example the

case for the cuts model with fixed density of impurities
where s = −1/2.

We should again emphasize the difference between for-
mulas obtained using the kinetic equation approach and
simplified way which leads to equations (6, 7). The differ-
ence in numerical factors appears due to different meth-
ods of averaging: in equations (6, 7) it is assumed that the
scattering events are randomly distributed in time, while
in the kinetic approach it is assumed that the scattering
events are randomly distributed in space. A simple way
to obtain equations (39–42) is to consider the mean force
applied from the electron gas to an asymmetric scatterer.
This force is determined by the momentum production on
the scatterer, or, in other words, residue of flows of mo-
menta of incident

∫
vxpDf(p)dp/2π2 and scattered parti-

cles. If the anisotropy is weak, the momentum production
can be found substituting the expression for distribution
function (18) into the collision integral (24). The flow ve-
locity is determined by equating this force per unit area to
the friction of electron system, −P/τ , where P = mvfne

is the full mean momentum of electron gas. The result ob-
tained in this way is the same as those obtained from the
kinetic approach if the mean free time does not depend on
the energy (Eqs. (39–42)).

For a direct comparison with numerical simulations
it is convenient to rewrite equations (39, 40) to obtain
explicit expressions for the ratchet velocity. For the Fermi-
Dirac distribution at T � EF this gives for the cuts model

vf =
S

24

(− cos(2θ)
3 sin(2θ)

)
(43)

and for the semidisks model

vf =
S

6

(− cos(2θ)
sin(2θ)

)
, (44)

where

S =
e2τ3

√
2E2

m
√
mEF τc(1 + ω2τ2)

= VF
(eEτVF )2τ

2E2
F τc(1 + ω2τ2)

. (45)

To compare the polarization dependence given by equa-
tions (43–45) (see also Eqs. (41, 42)) with the numerical
results shown in Figures 3, 4 we should take into account
that in the numerical simulations of the cuts model the col-
lisions with cuts take place always after time τc (random
positions of cuts in time) while the computations above
assume fixed distribution of scatterers in space that leads
to a factor 3 sin(2θ) in equation (43 instead of 2 sin(2θ)
in equations (9, 19). A part of this, the functional depen-
dence on parameters is the same in both computations. A
slight difference in a numerical coefficient related to dif-
ferent ways of averaging for cuts randomly distributed in
time (Eq. (19)) and in space (Eq. (43)).

The comparison of the theoretical dependence on τ ,
τc (Eqs. (43, 45)) with the numerical data in the cuts
model is shown in Figure 5 at different values of microwave
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Fig. 5. Dependence of the rescaled velocity of ratchet vf/VF

on the rescaled collision time τc/τi obtained by numerical simu-
lations of the cuts mode (symbols) for ωτi = 4.7; 7.05; 9.4 (red,
black, green symbols from top to bottom respectively). The full
curves show the theoretical dependence equations (43, 45) for
corresponding ωτi multiplied by a numerical factor Q = 0.54.
Here, the equilibrium Fermi-Dirac distribution has the tem-
perature T/EF = 0.1 and eEτiVF /EF = 4.2; the polarization
angle θ = 0.

frequency and θ = 0. It shows that the numerical data are
well described by the theoretical relation vf = −QS/24
with a numerical factor Q ≈ 0.5. This confirms that the
theory gives a good description of the numerical results.

It is also interesting to compare the theory for the disks
model with the numerical data of [28] (see Fig. 8 there).
Using the value of τc from equation (1) for a low den-
sity at R/rd ≈ 4 and eErd/EF = 0.5 we obtain from
equations (44, 45) vf/VF ≈ 0.14 instead of the numer-
ical value vf/VF ≈ 0.05 (according to Fig. 8 in [28] at
θ = 0 and R/rd = 4 we have ωτ ≈ 0.8 since τi 
 τc).
This means that a numerical factor Q between the theory
equations (44, 45) and the numerical simulations [28] is
Q ≈ 1/3. Such a correction can be considered as rather
satisfactory since the theory assumes low density approx-
imation which is not yet well justified at R/rd = 4. Also
the theory of kinetic equation works in one-collision ap-
proximation which may work not so well for completely
dynamical systems of semidisks lattice.

Finally, let us return to a simple derivation of the
photogalvanic current given in a paragraph after equa-
tion (42). According to this consideration the directed flow
appears on a time scale of the order of τ . For a purely
dynamical system, like the semidisks Galton board, we
have τi = ∞ and τ = τc. We note that τc is given by equa-
tion (1) and is proportional to the inverse Lyapunov expo-
nent of chaotic dynamics in absence of microwave driving.
This leads to an interesting fundamental question about
the photogalvanic current in a purely dynamical system.
Indeed, in absence of friction the semidisks Galton board
with a monochromatic driving is a Hamiltonian system
which has time reversibility property (like cosωt), while
the appearance of directed current on a time scale τc
breaks time reversibility. The dependence of the photogal-
vanic current on parameters of a real relaxation process is
clear from the phenomenological point of view: the current
changes its sign with the time inversion while the electric

field squared keeps its sign (Eq. (21)). This means that the
photogalvanic coefficient α in equation (21) should contain
the relaxation constant. By its own, the kinetic equation
is irreversible even if only the static potential scatterers
are taken into account. In fact, a purely dynamical system
is reversible and hence the stationary current should van-
ish for it. In principle this point can be explained by the
dynamical chaos where the time reversibility is broken in
practice for a coarse-grained distribution. However, a more
delicate point is the question about the detailed balance
principle. In a dynamical system it means that the tran-
sition probabilities are proportional to a measure in the
Hamiltonian phase space and if all phase space is chaotic
there should be no global directed current on large time
scales. In a sense the numerical results [26] are in favor of
this statement since there a small friction force Ff = −γp
gives the velocity of stationary flow vf ∼ γR which dis-
appears in the limit of γ → 0. However, in the limit of
small γ the situation is somewhat specific since the av-
erage steady state energy Es, analogous to temperature,
grows with a decrease of γ as Es ∼ ((eE)2/γ)2/3 ∼ T
that leads finally to the relations similar to those given by
equations (9, 15, 41, 42). The numerical simulations per-
formed in [27] have been done with the Nosè-Hoover dy-
namics (see [30]) which can be viewed as a purely dynam-
ical time reversible Hamiltonian system in an extended
phase space with additional variables. Thus the photo-
galvanic current can appear in a Hamiltonian asymmet-
ric system with monochromatic driving. However, the di-
rected flow we discussed takes place only in some part of
total phase space corresponding to physical variables and
it is possible that the total current in total extended phase
space still remains zero. Indeed, in principle it is known
that in chaotic Hamiltonian systems there may be two
separate components (e.g. one with a regular motion and
another with a chaotic motion) with a directed current in
each component but with the total current equal to zero
(see examples in [31]). The ratchet analyzed in [27] with
the Nosè-Hoover dynamics can be such a case. Also, the
contradiction can be resolved if to assume an existence
of a certain time scale after which the photogalvanic cur-
rent is stabilized. Thus, from a practical view point we
may say that in a dynamical chaotic Hamiltonian system
signatures of directed flow appear after the time scale τc
but since the current velocity vf it proportional to a sec-
ond power of weak field vf ∝ (eE)2 a relatively long time
tr ∝ 1/(eE)2 is needed to observe this current in presence
of chaotic fluctuations and it is necessary that the steady
state distribution in energy is established on a time scale
which is shorter than tr. Further studies are required to
understand more deeply the problem of time reversibility
in the context of the photogalvanic effect.

4 Effects of a magnetic field for the semidisks
Galton board

For experiments on photogalvanic current in asymmetric
nanostructures it is important to know what are the effects
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Fig. 6. Dependence of rescaled ratchet velocity vx/VF in x-
direction on the ratio rd/RL proportional to the magnetic field
B perpendicular to the semidisks Galton board. The system
parameters are R/rd = 2.5, T/EF = 0.1, eErd/EF = 0.3,
lω/rd = 2πVF /(ωrd) = 9. The bottom (top) red (blue) curve
corresponds to the polarization angle θ = 0 (θ = π/2). The
rescaled mean free path due to impurity scattering is l/rd =
VF τi/rd = 45; the rescaled computation time is ωt = 3.1×106.

of a magnetic field B perpendicular to the 2DES plane on
the strength of current and its directionality. An analytic
solution of the kinetic equation becomes much more com-
plicated compared to the cases considered above. This is
especially the case when the Larmor radius RL of elec-
tron motion becomes comparable with the size of asym-
metric antidots. Therefore, the numerical simulations in
this case become especially important. For the semidisks
Galton board the effects of magnetic field have been stud-
ied in [28]. They clearly show that the ratchet current
becomes quite weak when the Larmor radius RL becomes
smaller then the semidisk radius rd. This is rather nat-
ural from a physical view point since in this regime the
scattering on semidiscs is suppressed.

However, in the regime with rd/RL ∼ 1 a relatively
weak magnetic field can significantly affect the direction-
ality of photogalvanic current. This is illustrated in Fig-
ures 6, 7 obtained by numerical simulations with the
method described in [28]. The results of these Figures
clearly show that a moderate magnetic field can change
the direction of current almost on 180 degrees (Fig. 7).
The angular dependence of Figure 7 is not sensitive to the
microwave field strength and therefore is not related to
the Lorentz force. We attribute the origin of this strong
angular dependence to a significant change of scattering
process in the regime when rd/RL ∼ 1 related to multiple
collisions of electron with a semidisk.

To make a more close link to possible experimen-
tal studies we note that for the electron density ne =
2.5 × 1011 cm−2, an effective electron mass m = 0.067me

and the semidisk radius rd = 0.4µm we have for the
parameters of Figure 6 the following physical values:
EF ≈ 100 K, VF = 2.2 × 107 cm/s, ω/2π = 60 GHz,
lω = 2πVF /ω = 3.6 µm and l = VF τi = 18 µm (such
value of l corresponds to mobility of about 2×106 cm2/V
S), a magnetic field B = 0.075 T corresponds to the Lar-

Fig. 7. Dependence of ratchet current angle ψ on a rescaled
magnetic field rd/RL ∝ B for the case of Figure 6 at θ =
0; curve with circles shows numerical data, angle is given in
radians.

Fig. 8. Dependence of the ratchet rescaled velocity vx/VF on
the rescaled ratio rd/RL ∝ B for parameters of Figure 6 at θ =
0 and various values of rescaled microwave frequency ωrd/VF =
0.335 (brown), 0.447 (orange), 0.648 (magenta), 0.693 (red),
0.805 (cyzen), 0.939 (yellow), 1.12 (blue), 1.39 (violet) (curves
from top to bottom at rd/RL = 0.8).

mor frequency ωL ≈ 34 GHz and rd/RL = 0.4. For these
parameters and data of Figure 8 the microwave frequency
changes from 29 GHz to 120 GHz when the rescaled ratio
changes from ωrd/VF = 0.335 to 1.39 (ωrd/VF = 0.693
for Fig. 6).

In absence of magnetic field there is no dependence
of current direction on the microwave frequency. On the
contrary, in the regime rd/RL ∼ 1 the directionality of
flow can be also changed by changing ω as it is shown in
Figure 8. We also note that the velocity of flow in x di-
rection remains the same with a change B → −B due to
symmetry reasons and we present data only for B > 0.

This angular dependence becomes weaker when the
mean free path l decreases due to decrease of impurity
scattering time τi (see Fig. 9). The results of Fig. 9 also
show that the ratchet effect disappears when l becomes
smaller than size of asymmetric antidot. Of course, the
current is absent when the semidisks are replaced by disks
(in this case the numerical data, shown by dashed curve
in Fig. 9, are on a level of statistical fluctuations).
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Fig. 9. Dependence of the ratchet rescaled velocity vx/VF on
the rescaled ratio rd/RL ∝ B for parameters of Figure 6 at
θ = 0 and various values of rescaled mean free path l/rd =
VF τi/rd = 45, 22.5, 11.1, 4.5, 2.25, 1.1 (full curves from top
to bottom at rd/RL = 0.8; for the physical parameters given
in the text l changes from 18 µm to 0.45 µm); dashed curve
corresponds to the case when semidisks are replaced by disks
and l/rd = 45.

The angular dependence of the photogalvanic cur-
rent B and ω found in this section is rather nontrivial
and further studies are required to obtain a detailed ex-
planation for it.

5 Discussion

In this paper we developed a theory which determines
the strength and directionality of the phogalvanic cur-
rent in artificial asymmetric nanostructures. The theoret-
ical results are in good agreement with detailed numerical
simulations performed in this work and in [28]. We also
find from numerical simulations that the directionality of
photogalvanic current is very sensitive to weak magnetic
fields.

A microwave field of E = 1 V/cm generates in a lattice
of semidisks with R ∼ 1 µm a current of about 0.2 nA per
lattice row at electron density ne ≈ 2.5×1011. For a struc-
ture of 100 µm we have currents of about 20 nA. The pho-
togalvanic effect has classical grounds and exists at room
temperature if the mean free path remains larger (or com-
parable) than the size of asymmetric antidot. This is the
case of the Lund experiment [25] with l ∼ R ∼ 100 nm
(the polarization there corresponds to θ = π/2, triangles
are used instead of disks). For a fixed ratio R/rd a de-
crease of R ∼ l by a factor 10 gives a drop of current by
a factor 100, however, the induced voltage drops only by
a factor 10 since a resistance also drops 10 times. While
the experiments [23,25] demonstrate the existence of the
effect there are still no experimental data to be compared
with our theoretical and numerical results: in the experi-
ments the strength of current is known but a microwave
field strength acting on electrons is not well defined. Also
till now only two polarization cases have been analyzed

experimentally (θ = 0 in [23] and θ = π/2 in [25]). The di-
rectionality of current in these experiments is in agreement
with our results but a detailed experimental investigation
of the polarization dependence is still highly desirable.

All these considerations clearly show that further ex-
perimental studies of photogalvanic currents in asymmet-
ric nanostructures are very interesting and important. In-
deed, the theory developed above considers only the case
of noninteracting particles. In reality electron-electron in-
teraction may play an important role, as well as plasmon
modes can also affect the photogalvanic effect. Also at
small scales with R ∼ 100 nm the level spacing between
quantum levels inside one lattice cell becomes of the or-
der of 100 GHz (at ne ∼ 3 × 1011) and quantum effects
may play an important role. Also at R < 100 nm the col-
lision frequency enters in teraherz range VF /R > 1 THz.
Thus such asymmetric nanostructures can be used as room
temperature detectors of radiation in teraherz range. In
analogy with the GORE-TEX material used in common
life for one-way transport of water and air [32] such ar-
tificial asymmetric nanostructures may be considered as
“NANO-GORE-TEX” material. The further studies of the
NANO-GORE-TEX properties may bring new interesting
applications including high frequency detectors and sen-
sors.
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